
Dynamical scaling of sputter-roughened surfaces in 2+1 dimensions

E. S. Tok,1 S. W. Ong,2 and H. C. Kang2,*
1Department of Materials Science, National University of Singapore, 3 Science Drive 3, National University of Singapore,

Singapore 117543
2Department of Chemistry, National University of Singapore, 3 Science Drive 3, National University of Singapore, Singapore 117543

(Received 18 November 2003; revised manuscript received 26 April 2004; published 26 July 2004)

The asymptotic scaling behavior of sputter-roughened surfaces is of great current interest. In particular, the
disparately wide-ranging values of the growth exponent found experimentally, and whether sputter-roughening
belongs to the Kardar–Parisi–Zhang universality class in 2+1 dimensions, are two interesting issues. We
address these issues using simulations of an atomistic model. The asymptotic scaling appears to be Edwards–
Wilkinson. Crossover behavior in the model leads toeffectivegrowth exponents that vary widely depending
upon the regime of observation.
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Dynamical scaling ideas have been extensively applied to
evolving interfaces using the general idea that the width of
an interface depends in a self-affine manner upon the length
and time aswlstd, lafst / lzd [1–5]. For large values oft / lz,
fst / lzd goes to a constant and fort / lz much smaller than unity
fst / lzd,st / lzdb. The exponentz is equal toa /b. Thus, when
t / lz is large, the roughnesswl scales aswl , la with the lateral
length scalel. Similarly, the width grows aswl , tb whent / lz

is small. This dynamical scaling behavior is observed for
rather diverse growth phenomena such as the evolution of
flame fronts, chemical waves, and dendrites. It is also deeply
related to other phenomena such as the properties of directed
polymers in a random medium and the asymptotic mixing
behavior of randomly stirred fluids. It has been proposed[6]
that the asymptotic scaling properties for all these phenom-
ena belong to the same universality class described by the
Kardar–Parisi–Zhang(KPZ) equation
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wheren is an effective surface tension. The nonlinear term
arises because interfaces do not evolve merely by uniform
displacement perpendicular to the plane of the interface; the
global growth velocity of the interface is only the vertical
component of the locally normal growth velocity of the in-
terface. Taking this into account and keeping only the
lowest-order term results in the nonlinear term above[6].
The delta-function correlated noise describing, for example,
deposition or removal at random locations on the
surface is given by the termh with khsx,tdhsx8 ,t8dl
=Ddsx−x8ddst− t8d whereD is proportional to the sputtering
flux.

There is evidence for KPZ scaling behavior for a wide-
range of phenomena[1–5]. However, in the case of sputter-
roughening of surfaces there are still unresolved questions
about the asymptotic scaling properties of the interface. The
evolution of a surface as a result of sputtering can be de-

scribed by the Kuramoto–Sivashinsky(KS) equation[7]:
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In contrast to the KPZ equation, the bare value of the effec-
tive surface tensionn in the KS equation is negative. This
negative surface tension, and the presence of the first two
terms ¹2h and u¹hu2, are the consequences of the atomic
mechanism for roughening proposed by Sigmund[9], i.e., a
sputtering particle dissipates its kinetic energy(through a
collision cascade) in a Gaussian distribution centered about a
point that is a finite distance beneath the point of impact at
the surface of the solid. Generally, deriving the continuum
equation from a microscopic model for interface growth/
erosion is not a solved problem, but for the sputtering
mechanism proposed by Sigmund, the continuum equation
has been derived from the microscopic model. The KS equa-
tion has been shown[7,8] to include the lowest-order terms
modelling this microscopic mechanism. Since the center of
the energy dissipation distribution is beneath the surface
sputter-erosion at the bottom of a valley is favored over
sputter-erosion at the top of a hill[7,8]. The −k¹4h term
describes chemical-potential gradient driven diffusive sur-
face relaxation[10], and in combination with a negativen
determines a cutoff-wave vector below which surface height
fluctuations are not stable[11]. On the other hand the non-
linear term in the KS equation serves to couple modes with
different wave vectors stabilizing the height fluctuations
[12]. In the case of 1+1 dimensions, analytic argument
shows that the asymptotic scaling behavior of the KS equa-
tion is the same as that for the KPZ equation[13]. Numerical
simulations verify this conclusion[14,15]. However, in the
case of 2+1 dimensions, which is the important case for the
study of sputter-roughened solid surfaces, direct numerical
simulations have not been conclusive[16]. Similarly, ana-
lytic treatments by different groups have led to different con-
clusions [13,17]. Thus, there is no consensus on the
asymptotic scaling behavior of the KS equation for 2+1 di-
mensions. Aside from the question of whether the asymptotic
behavior for the KS equation is in the KPZ universality class,*Corresponding author.

PHYSICAL REVIEW E 70, 011604(2004)

1539-3755/2004/70(1)/011604(6)/$22.50 ©2004 The American Physical Society70 011604-1



it is also interesting to study the scaling behavior for early or
intermediate times, and to see how these might crossover to
late-time behavior. This is particularly relevant to the analy-
sis of experimental data where, for instance, growth expo-
nents ranging from 0.1[18] to unity [19] have been reported.
It is not straightforward to establish if two different experi-
ments probe the same time or length regimes of the rough-
ening behavior, and the range of experimentally observed
growth exponents may well be due to the different time
scales probed in different experiments. The purpose of this
work is to attempt an atomistic simulation of the sputtering
process in order to contribute to the discussion of these is-
sues.

Our atomistic model uses particles arranged in a simple
cubic lattice to simulate the solid. Only results for the sput-
tering flux in the direction normal to the(horizontal) surface
plane ofN=Nx3Ny sites are reported here. When a sputter-
ing particle hits the surface, the probability of a surface par-
ticle being ejected is computed using a Gaussian distribution
centered at a point at depthd vertically below the surface site
at which impact occurs. For each iteration, the lattice posi-
tion in the horizontal plane at which the sputtering particle
hits the surface is chosen at random. Thus, the atomic
mechanism for sputtering in our model is exactly that pro-
posed by Sigmund[9] and shown[7,8] to be described, in
the lowest approximation, by the first two terms of the KS
equation above. Nearest-neighbor and next-nearest-neighbor
particle pairs have attractive interactions of equal strengthJ.
Both thermally activated diffusion and sputtering moves are
allowed. In each iteration of the Monte Carlo simulation,
either a diffusion event or a sputtering event is attempted.
The choice is governed by a parameterp; the probability of
attempting a sputtering event is equal topN/ spN+Nad where
Na is the number of active particles. An active particle is a
particle that has at least one vacant nearest-neighbor or next-
nearest-neighbor site to which it can migrate. The parameter
p is the ratio of the attempt rate for a sputtering event per site
to the attempt rate(set to unity) for diffusion of an active
particle. Thus, the probabilitypN/ spN+Nad is the ratio of the
overall rate at which sputteringattemptsoccur to the overall
rate of diffusion attempts. The time-step in each iteration is
given by the quantity 1/spN+Nad. The number of active sites
changes as the surface roughens; thus in our simulations each
Monte Carlo iteration corresponds to a time-step of varying
length. Each simulation corresponds to a constant sputtering
flux determined byp. If a sputtering attempt is chosen, a
point of impact on the surface accessible to a vertical trajec-
tory is randomly selected. A solid particle is selected accord-
ing to a Gaussian distribution of widths centered at depthd
vertically below the point of impact. If the selected particle is
an active particle, it is ejected and removed from the solid.
Otherwise the iteration ends. If a diffusion attempt occurs, an
active particle is randomly selected from the list of all active
particles. A Metropolis[20] scheme is used to decide if the
migration of the selected particle to a randomly selected va-
cant neighboring site is successful. A temperatureT is used
to control the success rate of the attempted diffusive moves.
Clearly T must be set sufficiently low in order for the solid
not to melt or evaporate. On the other hand, ifT is too low,
diffusion attempts are rarely successful and the rate of ther-
mal diffusion is reduced.

Using this model we investigate the effects of varying the
relative rates of sputtering to diffusion. Plots of the interface
width w as a function of timet are shown in Fig. 1. The
value of p is varied from 0.005 to 0.1. This set of data is
mainly from simulations with a substrate lattice size of
Nx3Ny=1003100, although we also include data for lattice
sizes 4003400 and 50350 for p=0.05. The depth param-
eterd is set at unity. This means that the center of the Gauss-
ian distribution used to select a particle to sputter off the
surface is one lattice constant below the surface particle at
which impact occurs. The temperature for the data shown in
Fig. 1 is chosen so thatJ/kBT is equal to 0.5. The corre-
sponding data forJ/kBT=5.0 is shown in Fig. 2. In each of
these figures, the inset shows the same data plotted as logw2

vs. log t. For all the results reported here the widths of the
Gaussian distribution for energy dissipation is set at one
lattice constant.

There is a short early time regime in which the initially
atomically smooth surface rapidly roughens for very small
values of roughness; forJ/kBT equal to 0.5, the surface
roughness is smaller than one for this regime. Hence, this is
regime is probably not of relevance to actual sputtering ex-
periments. When the attempt rate for sputtering is small there
is an intermediate regime in which the growth kinetics is
considerably slower than the initial regime. For small values
of p this intermediate regime is clearly defined in the logw2

vs. log t plots. However, the duration of this intermediate
regime decreases asp increases, and for thep=0.1 data in
Fig. 1 (inset) this intermediate regime is barely discernible.
Assuming power-law kineticsw, tb, the effectiveb value
after the “knee” of each curve in Fig. 1 slowly increases from
approximately 0.17±0.02 forp=0.005 to approximately
0.35±0.02 forp=0.1. The error margins reported here and
elsewhere in the paper are obtained by analyzing the results
of two independent sets of simulations with the same number
of runs. We want to emphasize that in the intermediate scal-
ing regime these exponents are effective exponents in the

FIG. 1. This figure shows plots ofw2 vs. log t for J/kBT=0.5.
The same data is plotted in the inset as logw2 vs. log t. In both the
main and the inset panels, the data shown is forp=0.1, 0.05, 0.025,
0.01, and 0.005 in order of decreasing roughness for each value of
time. Data for 50350 ssquaresd, 1003100 sdotsd, and
4003400 scrossesd lattices are shown forp=0.05. Data for the
1003100 lattices is averaged over five runs, and that for the 50
350 lattice is averaged over eight runs. The labeled crosses forp
=0.025 are data points corresponding to the height and height-
correlation maps in Figs. 3 and 4.
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sense that the growth kinetics is only effectively power-law.
The data also shows a slow increase of the effectiveb value
with p in this intermediate regime. TheJ/kBT=5.0 data in
Fig. 2 shows a similar increase fromb=0.18±0.02 forp
=0.005 tob=0.38±0.01 forp=0.1. From the data for the
smallest sputtering fluxsp=0.005d in Fig. 1, it appears that
the effective value ofb slowly increases in the intermediate
time regime for J/kBT=0.5. It does not appear that the
power-law scaling holds for much more than one decade of
time. ForJ/kBT=5.0 a longer duration is observed in which
an effectivepower-law scaling applies, but all our data for
this intermediate regime supports the suggestion that power-
law scaling does not hold for the KS equation in 2+1 dimen-
sions[21]. The largest interface width in our simulations is
slightly larger than 30 for a 1003100 lattice. In this growth
regime the roughness is quite large and a cellular surface
morphology is clearly observed. This is illustrated in Figs. 3
and 4. Contour plots of the surface height at various times is
shown in Fig. 3 for as1003100d lattice. These maps of the
surface heights correspond to thep=0.025 roughening kinet-
ics data plotted in Fig. 1. The corresponding simulation time
for each of these height maps is indicated by a labeled cross
in Fig. 1. We used contour lines to indicate heights that are
equal to or lower(higher) than 25s75d% of the range be-
tween the lowest and the highest points on the surface for
each of these maps. The gradual roughening with time can be
observed; the rather uniform spacing of the contour lines at
the sides of the “hills” or “basins” shows that these are some-
what conical in shape. The tops of the “hills” appear to be
slightly flattened.

In addition to the height-maps, we also plot maps of the

height-height correlationgsrW ,td=khsrW ,tdhs0W ,tdl in Fig. 4.
These maps correspond to the height-maps plotted in Fig. 3.
Here, contour lines indicate height correlations from 75% to
100% of the maximum peak(at the origin). These maps

show that a hexagonal symmetry develops with sputtering as
has been previously observed experimentally[22]. Straight
lines are drawn to indicate the positions of the first-order
maxima in the height-height correlation. The positions of
these maxima show that the widths of the “hills” and “ba-
sins” on the surface increase gradually with time.

From the main panel in Fig. 1 the data forp=0.1 and 0.05
show that the growth kinetics at late times scales asw2

, log t. That is, Edwards–Wilkinson behavior[23] is ob-
served. Forp=0.05 andJ/kBT=0.5, the value of the effec-
tive exponent at the longest time is approximately
0.15±0.01, i.e., it is already considerably smaller than the
KPZ growth exponent in 2+1 dimensions; that is asymptotic
sputtering kinetics is Edwards–Wilkinson rather than KPZ.
These observations support the suggestion that in 2+1 di-
mensions, the asymptotic scaling behavior for the KS equa-

FIG. 2. This figure shows plots ofw2 vs. log t for J/kBT=5.0.
The same data is plotted in the inset as logw2 vs. log t. As in Fig.
1, in both the main and the inset panels, the data shown is forp
=0.1,0.05,0.025,0.01, and 0.005 in order of decreasing roughness
for each value of time. In contrast with Fig. 1, the asymptotic loga-
rithmic regime is not as clearly established here.

FIG. 3. The surface configurations corresponding to the labeled
crosses for thep=0.025 run in Fig. 1 are plotted here. Dashed
(solid) lines are contours for heights that are higher(lower) than or
equal to 50% of the range between the lowest and the highest point
for each plot. The contour spacing used in each plot is fixed. These
are two units for plots(a) and(b), three units for(c), and ten units
for plots (d)–(f).

DYNAMICAL SCALING OF SPUTTER-ROUGHENED… PHYSICAL REVIEW E 70, 011604(2004)

011604-3



tion is not KPZ. This is more clearly so for the higher tem-
perature data. The plot in the main panel of Fig. 2 shows that
the EW scaling regime is just barely reached in ourJ/kBT
=5.0 simulations. Thus, as the temperature is lowered and
the diffusion rate decreases, the asymptotic regime EW is
reached at larger length and time scales. The simulation re-
sults we have described above provide a framework for un-
derstanding the wide-ranging values ofb that are obtained
from various experimental measurements. Lowb values can
be understood in two ways. If the growth has reached the
EW regime, then the effective value of the growth exponent
may be small. In our longest simulations, a value of
0.15±0.01 was observed. This corresponds to the long-time
and large-p of the data shown in Fig. 1, i.e., large sputtering
flux relative to diffusion rate. On the other hand, a small
value ofb may also be observed if the experiment probes the

intermediate growth regime for a system with a small value
of p; as noted above, the duration of this intermediate regime
increases asp decreases, i.e., small sputtering flux compared
to diffusion rate. The simulations show that the effective
value ofb in this regime decreases asp decreases. However,
it is not clear from our simulations if there is a nonzero
asymptotic value ofb in the low p limit. The smallest value
that we observed is approximately 0.17±0.02.

The highb values reported in experiments can be under-
stood as corresponding to the crossover from the intermedi-
ate growth regime to the EW regime. For the curves shown
in the inset of Fig. 1(Fig. 2) the effective value ofb for this
crossover region ranges from 0.74(0.79) to 1.0 (1.1) for
J/kBT=0.5 (5.0). The data forp equal to 0.025 and 0.0175
suggest an upper bound of 1.0 for this effectiveb value;
somewhat longer simulation runs for lowerp values are
needed to confirm this upper bound. In summary, depending
upon the time regime probed, the data shows that a wide
range of effectiveb values(up to unity) may be observed.

Direct numerical integration[14] and atomistic simulation
[24] have previously been used to study sputter erosion.
Comparing our data in Figs. 1 and 2 to the time dependence
of the interface width in Ref.[14] (Figs. 10 and 12), it ap-
pears that Ref.[14] observed growth kinetics that is similar
to what we observe here as the intermediate time regime and
the early part of the crossover to EW behavior. The different
kinetic regimes we observed are also seen in the atomistic
simulations of Ref.[24] (Fig. 4) although the rapid increase
in the interface width at the end of the intermediate regime
was attributed to finite-size effects there. Our data for the
4003400 and 50350 lattices plotted in Fig. 1 demonstrate
that this is probably not the case; there is no indication of a
finite-size effect for the regime that we have probed in the
simulations. We also show that varying the parameterp var-
ies the duration of the intermediate regime. In Fig. 2, the
smallest value ofp results in an intermediate regime that
covers more than two decades of time. Our results suggest
that the crossover from the intermediate regime to EW scal-
ing corresponds to roughening dominated by the stabilizing
nonlinear term to roughening dominated by the linear terms
in the KS equation. The kinetics in the intermediate region is
only effectivelypower-law; except for smallest value ofp
this is clearly seen in the data in the insets of Figs. 1 and 2.

In order to investigate the scaling behavior further, the
roughness exponenta is obtained by computing the width of
the interface as a function of the horizontal length scalel.
For each lattice sizeL=Lx=Ny, box sizes ranging froml =2
to l =L are used to measurewl. The data for a 4003400
lattice is plotted in Fig. 5. This data(inset) shows that for
short-length scales, the interface widthwl scales linearly with
the length, that is,wl , la with a equal to unity. The plots in
Fig. 5 show the expected finite-size effect such that for suf-
ficiently long lengthsl, the roughnesswl reaches a saturation
value. However, for an intermediate length regime, a dis-
tinctly linear dependence ofwl

2 upon the logarithm ofl is
observed. This scaling regime is not observed for either very
long times or very short times. In particular, it is not ob-
served for the curve corresponding to the longest time in Fig.
5. The length scale over whichwl , l slowly increases with
time; at long times, only thewl , l regime and the saturated

FIG. 4. The height-correlationsgsrW ,td=khsrW ,tdhs0W ,tdl corre-
sponding to the surface configurations shown in Fig. 3 are plotted
here. Solid(dashed) contours indicate correlations higher(lower)
than 0.75 of the maximum for each plot. The contour spacing used
in each plot is fixed. These are 0.05, 0.1, 0.75, 7.5, 25, and 40 in
order of increasing time. The straight lines are drawn to indicate the
positions of the first-order maxima in the correlation.

TOK, ONG, AND KANG PHYSICAL REVIEW E70, 011604(2004)

011604-4



regime are observed. Similarly, we do not observe the loga-
rithmic scaling regime for short times. We were also not able
to observe this EW regime for smaller lattices of 2003200
suggesting that the asymptotic roughening behavior can be
seen only at somewhat large lateral lengths.

The linear scalingwl , l for short lengths is understand-
able if we consider the conical cellular structure of the
interface observed in the simulations; the vertical length
scale is linearly proportional to the lateral length scale when
the latter is smaller than or on the order of the lateral size
of the cones. This conical and cellular nature of the surface
has been observed experimentally, and also suggested by
theoretical considerations[25]. Our simulation results
suggest the following scenario for sputter-roughening of in-
finitely large surfaces. A conical structure develops on the
surface so thatwl scales linearly withl for small l and for
any time regime. At long times and long horizontal length
scales, the roughening is EW; conical structures decorate a
logarithmically rough surface with unstable long wavelength
fluctutations. For finite-sized surfaces, the logarithmic scal-
ing with lateral length scale is not easily accessible at long
times because the roughness saturates at smaller horizontal
lengths than is necessary for observing it. The results pre-
sented here are consistent with numerical work combined
with perturbation theory[16] that suggests EW behavior at
long time for the deterministic KS equation. Our simulations
provide strong evidence that the asymptotic behavior of the
KS equation in 2+1 dimensions is not in the KPZ universal-
ity class.

An interesting point noted previously is that the bare
value of the parametern in the KS equation becomes posi-
tive if the center of the Gaussian distribution for selecting
particles to sputter is displaced above the point of impact
[25]. With a positive value ofn, the KPZ equation is

recovered. Then, the growth exponent is expected to be
approximately 0.24 and the cellular structures that develop
on the surface are rounded bulges instead of cones. We
investigate this by setting the depth parameterd equal to −1,
that is, the center of the Gaussian distribution for sputtering
is one lattice constantabovethe site at which impact occurs.
For p=0.01 and J/kBT=0.5, the KPZ growth exponent
is obtained(w, tb; b=0.24±0.02) as shown in Fig. 6. The
inset shows thatwl , la with a close to 1

2. Thus, our
simulations provide direct atomistic evidence for the rela-
tionship between the depth of the center for the distribution
of sputtered particles and the sign of the effective surface
tension.

In summary, the data reported here provide evidence for
EW behavior in the long time limit for a sputter-eroded sur-
face. The crossover to EW behavior occurs more slowly
when diffusive surface relaxation is slow. For our longest
simulations, the effective growth exponent is approximately
0.15±0.01 and is clearly already lower than the KPZ value.
Depending upon the time regime in which effective growth
exponents are measured, a wide range of values(up to unity)
may be obtained, consistent with what is observed experi-
mentally. For the lowest values ofp, we see an extended
intermediate regime where the width is described byw, tb.
However, in general, the behavior observed in our interme-
diate regime is characterized by aneffectiveb that slowly
increases with time. A cellular structure of conical “hills”
and “basins” with hexagonal symmetry develops on the sur-
face. While the growth kinetics is quite readily accessible,
the roughness scaling is difficult to access in simulations
presumably because of the large lateral length scales
required. In addition, setting the depth parameter to a neg-
ative value changes the behavior to KPZ in agreement with
previous analysis.

FIG. 5. This figure shows plots ofwl
2 vs l for various values of

time for p=0.05 andJ/kBT=0.5 for 4003400 lattices. Herewl, the
vertical length scale, is measured by determining the roughness of
subsets of the lattice of sizel 3 l. In the inset logwl

2 is plotted
versus logl. The plots correspond, in order of increasing asymptotic
roughnesswl

2, to t=5810, 9724, 13526, 17249, 20930 and 24469
units. This is data, averaged over three 4003400 lattice runs, for
the same set of parameters as thep=0.05 data in Fig. 1.

FIG. 6. This figure plots logw2 vs log t for p=0.01 and
J/kBT=0.5 when the center of the distribution for selecting particles
to be sputtered is locatedabovethe point of impact. In the inset, the
dependence of logwl

2 upon logl is plotted for the same simulation
run. A KPZ growth exponent is clearly observed.
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